Transparencias

de

Redes de Ordenadores

Tema 6 Wireless LAN

Uploaded by

IngTeleco

http://ingteleco.iespana.es ingtelecoweb@hotmail.com

La dirección URL puede sufrir modificaciones en el futuro. Si no funciona contacta por email

Wireless LAN

- Crecimiento espectacular
- Beneficios WLANs:
 - Movilidad.
 - Los usuarios pueden moverse casi sin restricción y acceder a las LANs prácticamente desde cualquier lugar.
 - Criterio económico
- IEEE 802.11
 - "IEEE Standard for Wireless LAN Medium Access (MAC) and Physical Layer (PHY) Specifications"
 - Define protocolos inalámbricos para dar soporte a redes WLAN
 - El principal servicio es enviar MSDUs (MAC Service Data Units) entres dos LLCs (Logical Link Controls).
 - Generalmente un NIC inalámbrico y un punto de acceso (AP) proporcionan la funcionalidad del estándar 802.11.

RO (VAL)

802.11

- Funcionalidades MAC y PHY:
 - Conectividad inalámbrica de estaciones fijas, portátiles o móviles dentro de un área local.
- Aspectos más destacados:
 - Servicio de envío asíncrono y limitado en el tiempo.
 - Continuidad del servicio dentro de áreas extendidas mediante un Sistema de Distribución (pe Ethernet).
 - Velocidades de transmisión de 1 y 2 Mbps (11 Mbps)
 - Soporte de la mayoría de las aplicaciones del mercado
 - Servicios multicast
 - Servicios de gestión de red
 - Servicios de registro y autenticación

802.11 Differencias con LAN

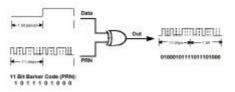
- Gestión de la energía.
 - Los NICs inalámbricos conmutan a modos de bajo consumo ("durmiente") cuando no transmiten durante un tiempo específico.
 - La estación "dormida" puede perder transmisiones de datos críticas.

 - Buffers para encolar mensajes.
 Las estaciones "despiertan" periódicamente y recuperan los mensajes pendientes.
- Ancho de banda:
 - Las bandas de espectro expandido no proporcionan gran ancho de banda: velocidades de transmisión por debajo de lo deseable.
 - Métodos para comprimir los datos: Mejor uso del ancho de banda.
- Seguridad:
 - Las WLANs transmiten en áreas grandes: Area a proteger muy superior.
 - Trabajo coordinado con el comité IEEE 802.10.
- Direccionamiento:
 - La topología de una red inalámbrica es dinámica.
 - La dirección de destino no siempre corresponde a la localización del destino.
 - Utilizar un protocolo basado en TCP/IP, como MobileIP, para gestionar estaciones móviles.

RO (VAL)

802.11 - Nivel Físico

- Tres alternativas para el nivel físico
 - Una solución óptica que utiliza luz infrarroja (IR)
 - Limitada en alcance y dentro de un local
 - Se considera más seguro frente a intrusos, puesto que precisa de enlaces perfectamente alineados a la vista
 - Velocidades de 1-Mbps con picos de 2-Mbps
 - Se basa en "Pulse Position Modulation" (PPM).
 - Dos soluciones basadas en RF:
 - "Direct sequence spread spectrum" (DSSS)
 - "Frequency-hopping spread spectrum" (FHSS)
 - Ensanchan artificialmente la banda de transmisión de modo que la señal transmitida pueda ser adecuadamente recibida y decodificada en presencia de ruido.
 - Puede cubrir áreas significativas y permite desplegar configuraciones de tipo celular en campus enteros.
 - Inseguro porque las transmisiones de RF pueden penetrar paredes y ser interceptadas por terceras partes sin ser detectadas.


802.11 - Nivel Físico (ii)

FHSS

- Técnicas de transmisión de banda estrecha convencionales.
- Cambian regularmente la frecuencia de transmisión.
 - Los sistemas saltan en un intervalo de tiempo fijo dentro de una banda extendida usando diferentes frecuencias en una secuencia predeterminada.
 - El fenómeno de salto permite a FHSS evitar el ruido de la banda estrecha en porciones de la banda de transmisión.

• DSSS

- Ensanchan artificialmente el ancho de banda de transmisión.
 - Modulan la secuencia de datos con un código de ensanchamiento.
- El receptor puede detectar datos sin errores incluso si el ruido persiste en parte de la banda de transmisión.

RO (VAL)

RO (VAL)

802.11 - Nivel Físico (ii) DSSS 01000101111011101000 11 Bit Barker Code (PRN): 1 0 1 1 1 0 1 0 0 0

3

802.11 - Nivel Físico (iii)

DSSS

- Velocidades pico de transmisión de 1, 2, 5,5 y 11 Mbps.
 - 1 Mbps usa "Differential Binary Phase Shift Keying" (DBPSK)
 - 2 Mbps usa "Differential Quadrature Phase Shift Keying" (DQPSK).
 - 11 Mbps usa CCK.

FHSS

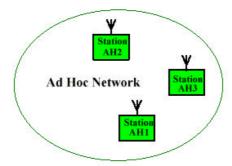
- 1 Mbps y opcional a 2 Mbps
 - Modulación "Gaussian Frequency Shift Keying" (GFSK) de 2 o 4 niveles.
- Banda de frecuencias de WLAN
 - DSSS o FHSS operarán en la banda de frecuencias de 2.4 2.4835 GHz, no sujeta a licencia para uso de aplicaciones industriales, científicas y médicas.
 - IR se utilizará la banda de 300 428,000 GHz.

RO (VAL)

802.11 - Nivel Físico (iv)

- División en canales del nivel físico RF
 - Varios canales en la misma área o áreas adyacentes para aumentar el rendimiento agregado
 - Matriz de canales de tipo celular que soporte roaming para los clientes.
 - En DSSS los diferentes canales utilizan diferentes frecuencias.
 - En FHSS la secuencia de salto utilizada diferencia un canal del siguiente, pero todos operan en la misma banda ancha de frecuencia.

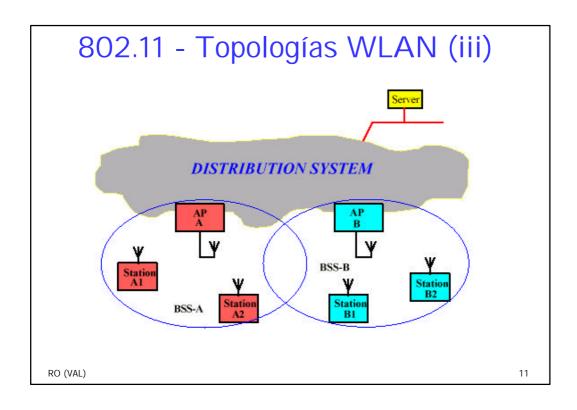
— DSSS


- Se usan canales de 13-MHz solapados con una frecuencia central ubicada cada 5 Mhz para transportar una señal de 1-MHz.
 - USA 11 canales DSSS
 - Europa y Asia 13 canales.
 - Japón un único canal.

– FHSS

- 79 saltos o frecuencias centrales en USA y Europa
- 23 saltos en Japón.

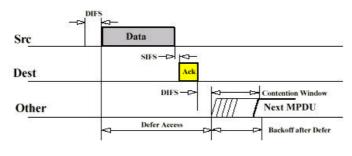
802.11 - Topologías WLAN


- Tres topologías básicas:
 - "Independen Basic Service Set" (IBSS)
 - Análoga a una red punto a punto: no es preciso un nodo servidor.
 - varios nodos de estaciones inalámbricas se comunican directamente entre sí sobre una base ad-hoc punto a punto.
 - Cubren un área limitada y no están conectadas a una red mayor .

RO (VAL)

802.11 - Topologías WLAN (ii)

- "Basic Service Set" (BSS)
 - Proporciona un área de cobertura donde las estaciones del BSS se encuentran completamente conectadas.
 - Una estación puede moverse libremente dentro del BSS, pero no puede comunicarse directamente con otras estaciones si abandona el BSS.
 - Basado en un "Access Point" (AP) que actúa como servidor lógico para una célula WLAN.
 - Las comunicaciones entre dos nodos A y B van desde A al AP y desde el AP al nodo B.
 - Además, un AP es preciso para efectuar las funciones de bridging y conectar múltiples células WLAN o canales, y para conectar células WLAN a redes LAN cableadas.
- "Extended Service Set" (ESS)
 - Múltiples células BSS enlazadas por backbones de cable o inalámbricos.
 - Configuraciones en las que múltiples células utilizan el mismo canal
 - Configuraciones en las que múltiples células utilizan diferentes canales para aumentar el rendimiento agregado.



802.11 - Nivel MAC

- Funciones de control de acceso
 - Direccionamiento
 - Coordinación de acceso
 - Generación y comprobación de FCS
 - Delimitación de PDUs LLC
- Coexistencia sin problemas con Ethernet
 - Los nodos cableados o no son lógicamente indistinguibles.
 - Diferencias enmascaradas por un AP (conecta un canal WLAN con un backbone LAN).
- 802.11 especifica CSMA/CA
 - Cuando un nodo debe transmitir un paquete escucha.
 - Si el canal está libre, transmitirá el paquete.
 - Si no, elige un retraso aleatorio hasta que puede transmitir su paquete.
 - En períodos con el canal libre se decrementa el contador y cuando alcanza el valor cero se transmite el paquete.
 - Las colisiones entre paquetes se minimizan.

802.11 - Nivel MAC (ii)

- El nivel MAC gestión reconocimientos y retransmisiones.
 - Uso eficiente del ancho de banda y reconocimiento más rápido.
 - La estación receptora envía un reconocimiento 10 ms después del fin de cada trama (SIFS)
 - SIFS < DIFS: la estación receptora toma el control del medio sin competir con otros nodos.
 - La implementación en el nivel MAC elimina las latencias del acceso al medio y permiten a los reconocimientos utilizar parte del período de espacio entre tramas en el que no se produciría ninguna actividad en cualquier caso.

802.11 - Nivel MAC (iii)

· Solución a las estaciones ocultas

RO (VAL)

- Fenómeno común de las instalaciones WLAN
- Colisiones originadas por una estación oculta.
 - A puede comunicarse con AP y B con el AP, pero están separadas por suficiente distancia para evitar comunicaciones directas.
 - A y B no se comunican directamente, por tanto el problema no afecta a las comunicaciones sino a la competencia por el acceso al medio.
 - El esquema de eliminación de colisiones requiere que una estación evite transmitir cuando otros nodos lo están haciendo: sin embargo A no sería capaz de detectar que B estaba transmitiendo al AP.
- Reguest To Send (RTS)/Clear To Send (CTS)
 - Los receptores 802.11 soportan RTS/CTS (opcional en transmisores)
 - El transmisor envía un RTS al AP pidiendo la reserva del tiempo necesario para transmitir una trama de una longitud determinada.
 - Cuando el medio está disponible, el AP difunde un mensaje CTS que todas las estaciones pueden escuchar, asegurando al nodo B acceso durante el tiempo solicitado.

RO (VAL)

7

13

802.11 - Nivel MAC (iv)

- Sistema de distribución inalámbrico
 - Capacidad de backbone inalámbrico sobre un canal
 - Opera utilizando un mecanismo de reenvío de tramas.
 - Cuando un AP recibe una trama para un nodo con el que no está conectado envía la trama a otro AP conectado por un canal inalámbrico.
 - Cada AP precisa de un solo canal de radio.
 - El rendimiento es aceptable, aunque la red entera está limitada al rendimiento agregado disponible sobre un canal simple.

Fragmentación

- Util en entornos con interferencias RF.
- El transmisor puede dividir mensajes en fragmentos.
 - El receptor recibe de modo más fiable las ráfagas breves: la menor duración reduce la probabilidad de errores.
- Obligatorio en receptores, opcional en transmisores.
 - El usuario usa la fragmentación cuando los errores son un problema.
 - El receptor puede usar componentes más baratos, con menor sensibilidad
 - La fragmentación produce sobrecarga en cada fragmento en lugar de en cada trama, reduciendo por tanto el rendimiento.

RO (VAL)

802.11 - Nivel MAC (v)

Roaming

- Mecanismos para que un cliente itinere entre varios APs operados en el mismo canal o en canales separados.
 - Cada AP transmite una señal de "beacon" cada 100 encuentros.
 - El beacon incluye una marca de tiempo (time stamp) para la sincronización de clientes, un mapa de tráfico, una indicación de las velocidades de transmisión de datos soportadas y otros parámetros.
 - Los clientes de roaming utilizan el beacon para medir la fortaleza de una conexión existente a un AP. Si la conexión se juzga débil, la estación que hace roaming puede intentar asociarse con un nuevo AP.
- La estación itinerante escanea para localizar un nuevo AP en el mismo o en diferente canal.
 - El cliente puede enviar pruebas a varios APs y recibir respuestas a las mismas desde cada uno para estimar el AP más fuerte.
 - Encontrada la señal más fuerte envía una petición de reasociación al nuevo AP, que debe aceptar y reconocerla.
 - El AP debe enviar una indicación de la reasociación a través de la ESS LAN o el sistema de distribución.

RO (VAL)

16

802.11 - Nivel MAC (vi)

- Ahorro de energía
 - Muchos clientes WLAN serán portátiles y operan con baterías.
 - Maximizar la duración de las baterías con esquemas de gestión de energía.
 - Los esquemas de gestión ponen al sistema en modo "durmiente" (sleep mode) cuando no se produce actividad durante un tiempo.
 - Un sistema durmiente puede perder transmisiones de datos críticas.
 - Los APs deben incluir buffers para encolar los mensajes.
 - Los clientes dormidos despiertan periódicamente y recuperan los mensajes.
 - Los APs eliminan los mensajes no leídos después de pasar un tiempo especificado, aunque los mensajes no hayan sido recuperados.
 - 802.11 no proporciona ahorro de energía en una configuración IBSS.
 - La capacidad de ahorro de energía de 802.11 se refiere primordialmente a los NICs.

RO (VAL) 17

802.11 - Nivel MAC (vii)

- Privacidad equivalente al cableado
 - Mecanismo por el cual las WLANs pueden proporcionar una privacidad equivalente al cableado (WEP).
 - Contemplado dentro del MAC estación-estación.
 - Algoritmo de seguridad RC4 del RSA.
 - Clave de 40-bit para encriptar el campo de datos de las tramas.
 - El Gobierno USA no restringe la exportación de productos que utilizan el método de encriptación RC4.