Transparencias

de

Redes de Ordenadores

Tema 9

Nivel de Red: IP 6^a Parte — IPv6

Uploaded by

IngTeleco

http://ingteleco.iespana.es ingtelecoweb@hotmail.com

La dirección URL puede sufrir modificaciones en el futuro. Si no funciona contacta por email

IPV6

- Objetivos:
 - Direcciones:
 - Espacio de direcciones que no se agote en el futuro previsible.
 - Eficiencia:
 - Reducir tamaño de tablas de routing y simplificar la cabecera de los datagramas IP (procesar los paquetes más rápidamente)
 - Seguridad:
 - Medidas de seguridad (privacidad y validación).
 - Tipo de servicio:
 - Diferentes tipos de servicio para ofrecer garantías de calidad de servicio y transporte de datos en tiempo real.
 - Multicasting
 - Movilidad:
 - Permitir la movilidad de un host sin cambiar su dirección.
 - Compatibilidad:
 - Permitir la coexistencia del protocolo nuevo con el viejo.

16

Direcciones IP

- Número máximo de direcciones 2³² = 4 Billion
 - Redes de Clase A: 16,777,214 nodos
 - Redes de Clase B: 65,534 nodos o menos
 - Redes de Clase C : 254 nodos o menos
 - 127 clase A + 16,381 clase B + 2,097,151 clase C = 2,113,659 redes en total
- Pregunta: Estima ¿cuánto crecerás?

Respuesta: ¡Más de 256 nodos!

- Clase C insuficiente, Clase B es la adecuada
- La clase B es la más popular.
 - 20% de las clases B estaban asignadas en 7/90 duplicándose cada 14 meses ⇒ Se agotarían en 3/94
- CIDR y NAT ⇒ balón de oxígeno para IPv4.

¿Cuántas direcciones?

- 10.000 millones de personas en 2020
- Cada persona tendrá más de un computador
- Suponiendo 100 computadores por persona \Rightarrow 10¹² computadores
- Todavía serán necesarias más direcciones.
 - Multiples interfaces por nodo
 - Multiples direcciones por interfaz
- Margen de seguridad $\Rightarrow 10^{15}$ direcciones
- Requisitos de IPng P
 - − 10¹² sistemas finales y 10⁹ redes.
 - Deseable de 10¹² a 10¹⁵ redes.

P V6

Cabecera

• <u>IPv6</u>:

Version	class	Flow Label			
Pa	yload Lend	gth Next Header Hop Limit			
Source Address					
Destination Address					

• IPv4:

Version IHL	Type of Service			Total Length
Identification		Flags Fragment Offset		
Time to Live Protocol		Header Checksum		
Source Address				
Destination Address				
Options				Padding

IP V6

2

IPv6 vs IPv4

- La cabecera IPv6 sólo ocupa el doble que la IPv4
- Eliminados:
 - "Header length", "fragmentation fields" (identification, flags, fragment offset), "header checksum"
- Reemplazados:
 - "Datagram length" por "payload length"
 - "Protocol type" por "next header"
 - "Time to live" por "hop limit"
 - "Type of service" por "class" octet
- Añadidos:
 - "flow label"
- Todos los campos son de tamaño fijo y no hay campos opcionales (extensiones de cabecera).
 - Evitar procesado innecesario en los routers intermedios sin sacrificar la flexibilidad que proporcionan las opciones.

IP V6

Cabecera I Pv6: Clase

- Clases:
 - Tráfico con control de congestión.
 - El emisor reacciona como respuesta a una congestión (TCP).
 - Aceptable un retraso variable e incluso la recepción desordenada.
 - Categorías con prioridades decrecientes:
 - Tráfico de control de Internet:
 - » Protocolos de encaminamiento (OSPF y BGP) y protocolos de gestión (SNMP).
 - Tráfico interactivo:
 - » La eficiencia del usuario depende de la respuesta: minimizar el retraso.
 - Transferencia masiva atendida:
 - » El usuario debe esperar a que la transferencia finalice (FTP o HTTP).
 - Transferencia masiva no atendida:
 - » No se espera una entrega instantánea (correo electrónico).
 - Tráfico de relleno:
 - » Se gestiona desatendidamente cuando no hay otros tipos de tráfico (USENET).
 - Tráfico sin caracterizar
 - Tráfico sin control de congestión.
 - Velocidad de transferencia y retraso constantes (vídeo y audio en TR)
 - Ocho niveles de prioridad
 - El criterio de asignación de prioridad es el modo en que se degradará la calidad del tráfico recibido en caso de descarte de paquetes.

IP V6

3

Cabecera I Pv6: Flujo

• Definición:

 Secuencia de paquetes enviados desde un origen particular hacia un destino (unicast o multicast) para el cual el emisor desea un tratamiento especial por parte de los routers.

• Emisor:

- Un flujo es una secuencia de paquetes, generados por una aplicación y que tienen los mismos requisitos de servicios.
- Puede comprender una o varias conexiones TCP.
 - Transferencia múltiple de ficheros (varias conexiones TCP).
 - Conferencia multimedia (un flujo para audio y otro para ventanas gráficas)

Router:

 Secuencia de paquetes que comparten atributos con efecto en el modo en que son tratados por él (camino, recursos asignados, requisitos de descarte, registro, y atributos de seguridad).

IP V6

Cabecera I Pv6: Flujo (ii)

- Los requisitos de flujo se definen antes de que comience el flujo de paquetes.
 - El router debe almacenar la información de los requisitos de cada uno de los flujos.
- Reglas aplicables a las etiquetas de flujo:
 - Los nodos o routers que NO soporten este campo deben ponerlo a 0 cuando originan un paquete, pasarlo sin modificación cuando lo reenvían e ignorarlo cuando lo reciben.
 - Todos los paquetes originados por un emisor con la misma etiqueta de flujo deben tener las mismas direcciones de destino y origen, prioridad, y cabeceras de extensión salto a salto y encaminamiento (si están presentes).
 - La etiqueta asignada a un nuevo flujo puede elegirse aleatoria y uniformemente entre 1 y 224, sin reutilizar una etiqueta durante el tiempo de vida de un flujo existente.

Extensiones de cabecera

ſ	Base	Extension	Extension	Data
	Header	Header 1	Header <i>n</i>	Data

- Cabeceras adicionales tras la cabecera estándar.
 - Identificadas por el campo siguiente cabecera.
 - La mayoría sólo se examinan en el destino.
- Opciones:
 - Salto-a-salto (examinada por todos los routers)
 - Sólo se ha definido una opción: longitud>64 KB (hasta 4 Gb).
 - Routing
 - Combinación del encaminamiento estricto y flexible de IPv4 (24 direcciones)
 - Fragmentación
 - Todos los routers IPv6 pueden transportar 536 bytes de datos.
 - Fragmentación sólo en el origen
 - Autenticación
 - · Firma digital
 - Opciones de destino
 - Información para su examen por el nodo de destino.

IP V6

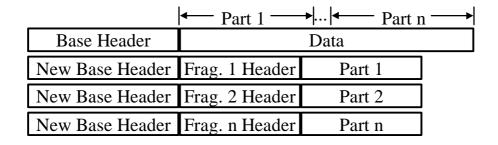
9

Extensiones de cabecera (ii)

• Sólo la cabecera base

Base Header	TCP
Next = TCP	Segment

• Cabecera base y una extensión de cabecera:


Base Header	Route Header	TCP
Next = Route	Next = TCP	Segment

• Cabecera base y dos extensiones de cabecera:

Base Header	Route Header	Auth Header	TCP
Next = Route	Next = Auth	Next = TCP	Segment

Fragmentación

- Los routers no pueden fragmentar, sólo los nodos emisores pueden hacerlo.
 - ⇒ Descubrimiento de la MTU del camino o "tunneling"
- La fragmentación necesita una extensión de la cabecera.
- El campo de datos se divide en fragmentos.
- Se crea una nueva cabecera base en cada fragmento.

IP V6

Direcciones I Pv6

- 128-bit de longitud. Tamaño fijo
 - $-2^{128} = 3.4 \times 10^{38}$ directiones $\Rightarrow 665 \times 10^{21}$ dir/m² de sup.terrestre
 - Si se asignan a un ritmo de 106/μs, durarían 20 años
 - Se espera que se utilicen entre 8×10^{17} y 2×10^{33} direcciones
 - $8 \times 10^{17} \Rightarrow 1,564$ directiones por m².
- Características:
 - Permite múltiples interfaces por nodo.
 - Permite múltiples direcciones por interfaz.
 - Permite unicast, multicast, y anycast.
 - Permite la asignación por proveedor, direcciones locales por ubicación o enlace.
 - El 85% del espacio no está asigado.

Notación Colon-Hex

- Dot-Decimal:
 - -127.23.45.88
- Colon-Hex:
 - FEDC:0000:0000:0000:3243:0000:0000:ABCD
- Reglas:
 - Pueden omitirse los ceros al principio de cada palabra.
 - Pueden omitirse <u>una</u> secuencia of palabras cero, p.e., FEDC::3243:0000:0000:ABCD o ::3243:0000:0000:ABCD
 - Puede dejar los últimos 32 bits en notacion dot-decimal, p.e., ::127.23.45.88
 - Puede especificar un prefijo por /longitud, p.e., 2345:BA23:7::/40

IP V6

Asignación inicial del prefijo I Pv6

Asignación	Prefijo	Asignación	Prefijo
Reserved	0000 0000	Unassigned	101
Unassigned	0000 0001	Unassigned	110
NSAP	0000 001	Unassigned	1110
IPX	0000 010	Unassigned	1111 0
Unassigned	0000 011	Unassigned	1111 10
Unassigned	0000 1	Unassigned	1111 110
Unassigned	0001	Unassigned	1111 1110
Unassigned	001	Unassigned	1111 1110 0
Provider-based*	010	Link-Local	1111 1110 10
Unassigned	011	Site-Local	1111 1110 11
Geographic	100	Multicast	1111 1111

^{*}Ha sido nenombrada como "Aggregatable global unicast"

Direcciones Aggregatable Global Unicast

- Asignación de direcciones: Plan "basado en proveedor"
- Formato: TLA + NLA + SLA + 64-bit interface ID
 - TLA = "Top level aggregator." (13 bits)
 - Rangos de valores de TLA asignados a varios registros
 - Para proveedores de "backbone" o "exchange points"
 - NLA = "Next Level Aggregator" (32 bits)
 - Proveedor de segundo nivel y abonado
 - · Permite más niveles de jerarquía dentro del NLA
 - SLA = "Site level aggregator" = 16 bits for link
 - Renumeración después de un cambio de proveedor ⇒ cambio de TLA y NLA. Pero tiene la misma SLA & I/f ID
 - Interface ID = 64 bits
 - Basado en formato IEEE EUI-64, extensión del IEEE 802 (48 bit).
 - Puede derivarse el equivalente EUI-64 a partir de la dirección IEEE 802 actual
 - Junto con el procedimiento de descubrimiento de vecinos evita ARP.

IP V6

Direcciones de uso local

 <u>Local de Enlace</u>: NO encaminadas fuera del enlace, FF:80::xxx

10 bits	n bits	118-n
1111 1110 10	0	Interface ID

 <u>Local de Ubicación:</u> NO encaminadas fuera de la ubicación, FE:C0::xxx

ı	10 bits	n bits	m bits	118-n-m bits
	1111 1110 11	0	Subnet ID	Interface ID

• Proporciona "plug and play"

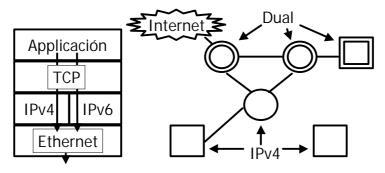
Direcciones Multicast

8 bits	4 bits	4 bits	112 bits		
1111 1111	Flags	Scope	Group ID		
0 0 0 T					

- Todos los routers pueden encaminar paquetes multicast
- IGMP es parte de ICMPv6: soporta multicast de forma nativa
- Flags:
 - $-T = 0 \Rightarrow$ Directiones multicast permanentes (well-known)
 - $-T = 1 \Rightarrow Transitorias$.
- Scope:
 - 1 Node-local; 2 Link-local; 5 Site-local; 8 Organization-local; E Global
- Predefinido:
- $-1 \Rightarrow$ All nodes; $2 \Rightarrow$ Routers; $1:0 \Rightarrow$ DHCP servers

1

Auto-configuración de dirección


- "Plug and play": en IPv4 se usa BOOTP y DHCP
 - DHCPng se empleará con IPv6
- Dos métodos: Sin Estados y Con Estados
- Sin Estados:
 - Un sistema utiliza una direcció link-local como origen y hace multicast a "All routers on this link"
 - El router responde con toda la información de prefijo necesaria.
 - Todos los prefijos tienen un "tiempo de vida" asociado
 - Si no hay un router puede utilizarse direcciones link-local perm.
- Con estados:
 - Configuración sin estados: Cualquiera puede conectarse.
 - Los routers piden al nuevo sistema que acuda al servidor DHCP (by setting managed configuration bit)
 - El sistema hace multicast a "All DHCP servers"
 - El servidor DHCP le asigna una dirección

IP V6

18

Mecanismos de Transición

- Nodos, Routers, Servidores de Nombres Dual-IP
- Tunneling IPv6 sobre IPv4
- Los nodos pueden ser actualizados parcialmente a IPv6
- Es mejor (aunque no preciso) actualizar los routers antes de hacerlo con los nodos.

IP V6

Consideraciones del nivel de Aplicación

- La mayor parte de los protocolos de aplicación deberán ser actualizados : FTP, SMTP, Telnet, Rlogin
- 27 de los 51 Full Internet standards, 6 de los 20 draft standards, 25 de los 130 proposed standards serán revisados para IPv6
- No hay checksum ⇒ El checksum en los niveles superiores es obligatorio, incluso en UDP
- Los estándares no-IETF: X-Open, Kerberos, ... serán actualizados
- Nuevos registros DNS

I CMPv6: Descubrimiento de vecinos

- ICMPv6 combina ICMP, ARP, Descubrimiento de Router e IGMP.
- El "descubrimiento de vecinos" es una generalización de ARP & descubrimiento de router.
- El emisor mantiene varias cachés:
 - destination cache: dest ⇒ vecino correspondiente
 - neighbor cache: vecino IPv6 ⇒ dirección de enlace
 - prefix cache: prefijos aprendidos a partir de las notificaciones de un router
 - router cache: direcciones IPv6 de router

IP V6

Descubrimiento de vecinos (ii)

- Antiguo destino => buscar en la caché de destinos
- Nuevo destino => buscar en la caché de prefijos. Si hay coincidencia => destino local!
- En caso contrario seleccionar un router de la caché de router y usarlo como siguiente salto (vecino).
 - Añadir esta dirección vecina a la caché de destinos